Limited proteolysis of maize NADP-malic enzyme.

نویسندگان

  • S Pinto
  • S R Rao
  • A S Bhagwat
چکیده

The incubation of maize malic enzyme at 37 degrees C with trypsin at a ratio of 150:1 of malic enzyme to trypsin caused rapid and complete inactivation of enzyme activity. The inactivation was caused by fairly specific cleavage of the enzyme monomer (62 kDa) into 40 kDa and 20 kDa fragments. The intensity of 40 kDa band increased with the time of treatment of enzyme with trypsin from 2 to 30 min. Substrates, especially NADP (25 microM) provided almost total protection against trypsin inactivation of the enzyme activity. The studies carried out with various other endoproteases indicated that endoprotease Lys-C was most effective in inactivating malic enzyme activity. The kinetic properties of the truncated enzyme have been studied. The Km value for malate in case of native and modified enzyme was found to be identical. Km NADP for the modified enzyme was slightly higher indicating that after proteolysis the enzyme affinity for NADP had decreased. Limited proteolysis with trypsin did not show any appreciable change in fluorescence properties of the modified enzyme. Binding of NADPH to the enzyme was not affected after modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primary structure of the maize NADP-dependent malic enzyme.

Chloroplast-localized NADP-dependent malic enzyme (EC 1.1.1.40) (NADP-ME) provides a key activity for the carbon 4 fixation pathway. In maize, nuclear encoded NADP-ME is synthesized in the cytoplasm as a precursor with a transit peptide that is removed upon transport into the chloroplast stroma. We present here the complete nucleotide sequence for a 2184-base pair full-length maize NADP-ME cDNA...

متن کامل

NADP-linked malic enzyme. Purification from maize leaves, Mr and subunit composition.

1. The isolation of NADP-linked malic enzyme (EC 1.1.1.40) from maize leaves is described, together with studies of its Mr and subunit composition. 2. The enzyme was purified to apparent homogeneity by affinity chromatography on N6-aminohexyl-2',5'-bisphosphoadenosine-agarose, gel filtration with Sephadex G-100 and ion-exchange chromatography on DEAE-Sephadex A-50. A purification of 140-fold wi...

متن کامل

An autoinhibitory domain confers redox regulation to maize glycerate kinase.

Glycerate 3-kinase (GLYK) is the terminal enzyme of the photorespiratory cycle in plants and many cyanobacteria. For several C(4) plants, notably grasses of the NADP-malic enzyme (ME) subtype, redox regulation of GLYK has been reported, but the responsible molecular mechanism is not known. We have analyzed the enzyme from the NADP-ME C(4) plant maize (Zea mays) and found that maize GLYK, in con...

متن کامل

Intracellular location and possible function of malic dehydrogenase isozymes from young maize root tissue.

It is known that there is a separation, i.e., compartmentation of organic acids in young maize tissue (11) and that the organic acid prodtucts (specifically malic acid) of CO, fixation are not in complete equilibriuim with mitochondrial pools (9, 10). Thus, there are at least 2 essentially separate metabolic pools of organic acids. Previous work with corn root tips led tus to postulate a metabo...

متن کامل

Basic residues play key roles in catalysis and NADP(+)-specificity in maize (Zea mays L.) photosynthetic NADP(+)-dependent malic enzyme.

C(4)-specific (photosynthetic) NADP(+)-dependent malic enzyme (NADP(+)-ME) has evolved from C(3)-malic enzymes and represents a unique and specialized form, as indicated by its particular kinetic and regulatory properties. In the present paper, we have characterized maize (Zea mays L.) photosynthetic NADP(+)-ME mutants in which conserved basic residues (lysine and arginine) were changed by site...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Indian journal of biochemistry & biophysics

دوره 39 6  شماره 

صفحات  -

تاریخ انتشار 2002